skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shen, Ju"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The price of a house depends on many factors, such as its size, location, amenities, surrounding establishments, and the season in which the house is being sold, just to name a few of them. As a seller, it is absolutely essential to price the property competitively else it will not attract any buyers. This problem has given rise to multiple companies as well as past research works that try to enhance the predictability of property prices using relevant mathematical models and machine learning techniques. In this research, we investigate the usage of machine learning in predicting the house price based on related estate attributes and visual images. To this end, we collect a dataset of 2,000 houses across different cities in the United States. For each house, we annotate 14 estate attributes and five visual images for exterior, interior-living room, kitchen, bedroom, and bathroom. Following the dataset collection, different features are extracted from the input data. Furthermore, a multi-kernel regression approach is used to predict the house price from both visual cues and estate attributes. The extensive experiments demonstrate the superiority of the proposed method over the baselines. 
    more » « less
  2. null (Ed.)